

 dialyzer

 v5.3

 [image: Logo]

 Table of contents

 	Dialyzer Release Notes

 	User's Guides

 	Dialyzer

 	Command Line Tools

 	typer

 	

 	Modules

 	dialyzer

Dialyzer Release Notes

This document describes the changes made to the Dialyzer application.

 Dialyzer 5.3

 Fixed Bugs and Malfunctions

	Fixed type inference for erlang:system_info(logical_processors).
Own Id: OTP-19307 Aux Id: PR-8954, GH-8948

	Dialyzer would crash when attempting to analyze a module compiled with the line_coverage option.
Own Id: OTP-19344 Aux Id: GH-9027, PR-9034

 Improvements and New Features

	Erlang/OTP type specifications has been updated to eliminate overlapping domains.
Own Id: OTP-19310 Aux Id: GH-8810, GH-8821, PR-8986

 Dialyzer 5.2.1

 Fixed Bugs and Malfunctions

	Man pages are now available for erl, erlc, dialyzer, and all other programs that are included in Erlang/OTP.
Own Id: OTP-19201 Aux Id: PR-8740

 Dialyzer 5.2

 Improvements and New Features

	The --gui option for Dialyzer has been removed.
Own Id: OTP-18667 Aux Id: PR-7443

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

 Dialyzer 5.1.3

 Fixed Bugs and Malfunctions

	Fixed an issue with bitstring type inference on segments following UTF-8/16/32 segments.
Own Id: OTP-19068 Aux Id: GH-8383

 Dialyzer 5.1.2

 Fixed Bugs and Malfunctions

	Fix dialyzer --output flag to work. This option was accidentally removed in
OTP 26.0.
Own Id: OTP-18767 Aux Id: PR-7657

	Fixed a crash in contract checking relating to opaque types.
Own Id: OTP-18772 Aux Id: GH-7676

 Dialyzer 5.1.1

 Fixed Bugs and Malfunctions

	Fixed a bug that caused dialyzer to crash when analyzing bogus code that
contained the literal atom undefined in segment sizes.
Own Id: OTP-18629 Aux Id: GH-7325

	Dialyzer could crash when attempting to analyze a module that defined a type
called product/.
Own Id: OTP-18738 Aux Id: GH-7584

 Dialyzer 5.1

 Fixed Bugs and Malfunctions

	When checking behaviors, Dialyzer could generate false warning that a callback
function did not have the correct type according to the spec in the behavior
definition.
Own Id: OTP-18237 Aux Id: GH-6221, PR-6243

	In a spec, list(none()) used to mean none/0. It has now
been corrected to mean the empty list.
Own Id: OTP-18276 Aux Id: GH-6333

	The compiler would silently accept singleton (unbound) type variables in a
union type. Starting from Erlang/OTP 26, the compiler will generate a warning
for this example. The warning can be disabled using the
nowarn_singleton_typevar option. In Erlang/OTP 27, the warning will become
an error.
Own Id: OTP-18389 Aux Id: GH-6508, PR-6864, GH-7116

	Fixed a bug that prevented the --plts option from being used together with
--add-to-plt.
Own Id: OTP-18485 Aux Id: GH-6850, PR-6854

	Fixed a crash when analyzing code that contained illegal bitstring segment
sizes.
Own Id: OTP-18562

	Fixed a crash when formatting certain warnings that contained multi-byte
unicode characters.
Own Id: OTP-18564 Aux Id: GH-7153

 Improvements and New Features

	Dialyzer has a new incremental mode that be invoked by giving the
--incremental option when running Dialyzer. This new incremental mode is
likely to become the default in a future release.
Incremental mode primarily differs from the previous, "classic", ways of
running Dialyzer, in that its model is optimised around the common use case of
regularly analysing a single codebase, tweaking the code, analysing it again,
and so on, without explicit reference to the building and checking of a PLT.
In this mode the PLT file acts much more like a true cache, where users
provide a codebase and a set of files they care about, and Dialyzer does the
legwork in terms of deciding how to most efficiently report all of the
relevant warnings given the cached results it may already have in the PLT (and
if a PLT doesn't exist, incremental mode will create one).
Own Id: OTP-18188 Aux Id: PR-5997

	Dialyzer now produces clearer error messages for contract violations.
Own Id: OTP-18238 Aux Id: PR-6271

	The name of a built-in type can now be reused as the name of type locally.
That is useful when an OTP release introduces a new built-in type; having the
possibility to redefine built-in types locally can make it easier to maintain
code that works in multiple OTP releases.
Own Id: OTP-18282 Aux Id: GH-6132, PR-6335

	There is new option -no_spec to ignore all specs. It is useful for debugging
when one suspects that some specs could be incorrect.
Own Id: OTP-18310

	Dialyzer's overloaded domain warning is now disabled by default, and can be
enabled with the flag -Woverlapping_contract.
Dialyzer used to issue a warning for overloaded domains stating
"such contracts are currently unsupported and are simply ignored".
These contracts are not "ignored" but rather, Dialyzer takes the union of the
overloaded domains. This means that we lose the dependency from each
corresponding input to output type. Because of this, the warning is really
about not being able to establish a dependency between the input and output
types of each respective overloaded function specification.
Own Id: OTP-18342 Aux Id: GH-6117, PR-6654

	Dialyzer has enabled (by default) warnings about unknown types and functions.
Prior to this change, Dialyzer had warnings about unknown types and functions
disabled (by default).
This default value has been overwritten; Dialyzer now warns about unknown
types and functions (as requested by the community in GH-5695). Thus, the
following two examples are equivalent, i.e., passing the -Wunknown function
is enabled by default:
dialyzer moduler.erl -Wunknown -Wmissing_return
dialyzer moduler.erl -Wmissing_return
Dialyzer has a new flag, -Wno_unknown. Its purpose is to suppress warnings
about unknown functions and types.
Users who wish to suppress these warnings can invoke Dialyzer using this flag.
Example: dialyzer module.erl -Wno_unknown
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18439 Aux Id: GH-5695,PR-6822, GH-6942

	Deprecates dbg:stop_clear/0 because it is simply a function alias to
dbg:stop/0
Own Id: OTP-18478 Aux Id: GH-6903

	Added the new built-in type dynamic/0 introduced in EEP-61, improving
support for gradual type checkers.
Own Id: OTP-18522

	Added the argparse module for simplified argument handling in escripts and
similar.
Own Id: OTP-18558 Aux Id: PR-6852

 Dialyzer 5.0.5

 Fixed Bugs and Malfunctions

	Fixed a bug that would cause analysis to crash.
Own Id: OTP-18372 Aux Id: GH-6580

 Improvements and New Features

	Replace size/1 with either tuple_size/1 or byte_size/1
The size/1 BIF is not optimized by the JIT, and its use can
result in worse types for Dialyzer.
When one knows that the value being tested must be a tuple,
tuple_size/1 should always be preferred.
When one knows that the value being tested must be a binary,
byte_size/1 should be preferred. However,
byte_size/1 also accepts a bitstring (rounding up size to a
whole number of bytes), so one must make sure that the call to byte_size/ is
preceded by a call to is_binary/1 to ensure that bitstrings
are rejected. Note that the compiler removes redundant calls to
is_binary/1, so if one is not sure whether previous code
had made sure that the argument is a binary, it does not harm to add an
is_binary/1 test immediately before the call to
byte_size/1.
Own Id: OTP-18432 Aux Id:
GH-6672,PR-6793,PR-6784,PR-6787,PR-6785,PR-6682,PR-6800,PR-6797,PR-6798,PR-6799,PR-6796,PR-6813,PR-6671,PR-6673,PR-6684,PR-6694,GH-6677,PR-6696,PR-6670,PR-6674

 Dialyzer 5.0.4

 Fixed Bugs and Malfunctions

	Dialyzer would crash when attempting to analyze a bit syntax segment size
having an literal non-integer size such as [].
Own Id: OTP-18307 Aux Id: GH-6419, GH-6473

	Dialyzer could crash when trying to analyze a convoluted nested expression
involving funs,
Own Id: OTP-18347 Aux Id: GH-6518, PR-6525

 Dialyzer 5.0.3

 Fixed Bugs and Malfunctions

	Dialyzer could crash when analyzing Elixir code that used intricate macros.
Own Id: OTP-18262 Aux Id: GH-6323

 Improvements and New Features

	The --input_list_file option has been added.
Own Id: OTP-18263 Aux Id: ERIERL-821

 Dialyzer 5.0.2

 Fixed Bugs and Malfunctions

	Two bugs have been fixed in Dialyzer's checking of behaviors:
When a mandatory callback function is present but not exported, Dialyzer
would not complain about a missing callback.
When an optional callback function was not exported and had incompatible
arguments and/or the return values were incompatible, Dialyzer would complain.
This has been changed to suppress the warning, because the function might not
be intended to be a callback function, for instance if a release added a new
optional callback function (such as format_status/1 for the gen_server
behaviour added in OTP 25).
Own Id: OTP-18127 Aux Id: ERIERL-817

	The no_extra_return and no_missing_return warnings can now be suppressed
through -dialyzer directives in source code.
Own Id: OTP-18148 Aux Id: PR-6068

 Dialyzer 5.0.1

 Fixed Bugs and Malfunctions

	Fixed the documentation for the missing_return and extra_return options.
Own Id: OTP-18120

 Dialyzer 5.0

 Fixed Bugs and Malfunctions

	Fixed a bug that could cause the type analyzer to enter an infinite loop.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17644 Aux Id: PR-5223

 Improvements and New Features

	Optimize operations in the erl_types module. Parallelize the Dialyzer pass
remote.
Own Id: OTP-17524

	Added the missing_return and extra_return options to raise warnings when
specifications differ from inferred types. These are similar to, but not quite
as verbose as overspecs and underspecs.
Own Id: OTP-17654 Aux Id: GH-5214

	The race_conditions option has been removed.
Own Id: OTP-17819

	The default location of the plt has been changed from $HOME to
filename:basedir(user_cache,"erlang").
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17821 Aux Id: GH-5016 PR-5408 OTP-17554

	dialyzer will now honor dependencies inside type declarations. That is, if
the declaration of an exported type changes, all modules using said type will
be revisited.
Own Id: OTP-17826 Aux Id: PR-5498

	Dialyzer now better understands the types for min/2,
max/2, and erlang:raise/3. Because of that, Dialyzer can
potentially generate new warnings. In particular, functions that use
erlang:raise/3 could now need a spec with a no_return/0 return type to
avoid an unwanted warning.
Own Id: OTP-17897 Aux Id: PR-5651

	The typer_core module has been added to provide an Erlang API for running
typer.
Own Id: OTP-17964 Aux Id: PR-5660

	Added the --annotate-in-place option to typer, which can be used to
annotate the specs that the tool inferred directly into the source code files.
Own Id: OTP-18035 Aux Id: PR-5802

 Dialyzer 4.4.4.1

 Improvements and New Features

	The --input_list_file option has been added.
Own Id: OTP-18263 Aux Id: ERIERL-821

 Dialyzer 4.4.4

 Fixed Bugs and Malfunctions

	There could be spurious warnings for unknown types when a type was a subtype
of an existing type that was a subtype of an unknown type.
Own Id: OTP-17963 Aux Id: GH-5764

 Dialyzer 4.4.3

 Fixed Bugs and Malfunctions

	Fixed a crash when opaque types contained certain unicode characters.
Own Id: OTP-17643 Aux Id: GH-5210

	When the compiler is invoked by Dialyzer, it will no longer apply an
optimization of binary patterns that would turn the pattern <<"bar">> into
<<6447474:24>>, which would be very confusing when printed out by Dialyzer.
Own Id: OTP-17768 Aux Id: GH-5429

 Dialyzer 4.4.2

 Fixed Bugs and Malfunctions

	Do not crash if a PLT file no longer exists.
Own Id: OTP-17511 Aux Id: GH-4501

	Fix bug in erl_types related to maps.
Own Id: OTP-17537

	Fix bugs in erl_types regarding improper lists.
Own Id: OTP-17541

	The underspecs and overspecs options will now generate correct warnings
for misused opaque types.
Own Id: OTP-17616 Aux Id: GH-5118

 Dialyzer 4.4.1

 Fixed Bugs and Malfunctions

	Do not expose line number 0 in messages if there are other locations to use.
Own Id: OTP-17443 Aux Id: GH-4890

	In rare circumstances, Dialyzer could crash analyzing code with a list
comprehension whose value was ignored. (Thanks to Ulf Wiger for reporting this
bug.)
Own Id: OTP-17482

 Dialyzer 4.4

 Improvements and New Features

	Some internal HiPE modules have been moved into the dialyzer application so
that dialyzer works when HiPE is disabled.
Own Id: OTP-16883

	The experimental HiPE application has been removed, together with all related
functionality in other applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16963

	Add warning option no_underspecs.
Own Id: OTP-16986 Aux Id: ERL-1379, ERL-1480, GH-4033

	Report filename and location for warnings returned due to the -Wunknown
option. When used from the command-line, one location per file is printed.
Own Id: OTP-16995 Aux Id: ERL-1348

	Add types and specifications for documentation.
Own Id: OTP-17084

	Add option error_location. The option is recognized if included in the
environment variable ERL_COMPILER_OPTIONS.
Own Id: OTP-17177 Aux Id: OTP-16824

	Clarify how to declare records used in match patterns.
Own Id: OTP-17183 Aux Id: ERL-892, GH-4493

 Dialyzer 4.3.1.2

 Improvements and New Features

	The --input_list_file option has been added.
Own Id: OTP-18263 Aux Id: ERIERL-821

 Dialyzer 4.3.1.1

 Fixed Bugs and Malfunctions

	In rare circumstances, Dialyzer could crash analyzing code with a list
comprehension whose value was ignored. (Thanks to Ulf Wiger for reporting this
bug.)
Own Id: OTP-17482

 Dialyzer 4.3.1

 Fixed Bugs and Malfunctions

	Correct handling of PLTs in the GUI.
Own Id: OTP-17091

 Dialyzer 4.3

 Improvements and New Features

	Clarify warning option -Wunmatched_returns in dialyzer.
Own Id: OTP-17068 Aux Id: ERL-1223

 Dialyzer 4.2.1

 Fixed Bugs and Malfunctions

	In rare circumstance, dialyzer wold crash when analyzing a list comprehension.
Own Id: OTP-16813 Aux Id: ERL-1307

 Dialyzer 4.2

 Improvements and New Features

	Improve handling of maps:remove/2.
Own Id: OTP-16055 Aux Id: ERL-1002

 Dialyzer 4.1.1

 Fixed Bugs and Malfunctions

	Fix a bug where warnings about overspecified functions were erroneously
emitted. Only overloaded functions were affected by the bug.
Own Id: OTP-16292

 Improvements and New Features

	Remove test data with GNU license.
Own Id: OTP-16146

 Dialyzer 4.1

 Improvements and New Features

	Allow native compilation when using Dialyzer from Erlang. The options native
(defaults to false) and native_cache have been added.
Own Id: OTP-15880 Aux Id: PR-2283

 Dialyzer 4.0.3

 Fixed Bugs and Malfunctions

	The HiPE compiler would badly miscompile certain try/catch expressions, so it
will now refuse to compile modules containing try or catch.
As a consequence of this, dialyzer will no longer compile key modules to
native code.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15949

 Dialyzer 4.0.2

 Fixed Bugs and Malfunctions

	Make sure Dialyzer does not crash if the formatting of results fails. Instead
of crashing, an unformatted version of the results is returned.
Own Id: OTP-15922 Aux Id: PR-2240, ERL-949

 Dialyzer 4.0.1

 Fixed Bugs and Malfunctions

	Fix a bug that caused a crash when indenting a Dialyzer warning mentioning
more than one record field.
Own Id: OTP-15861 Aux Id: ERL-953

 Dialyzer 4.0

 Fixed Bugs and Malfunctions

	All incorrect (that is, all) uses of "can not" has been corrected to "cannot"
in source code comments, documentation, examples, and so on.
Own Id: OTP-14282 Aux Id: PR-1891

 Improvements and New Features

	By default Dialyzer inserts line breaks in types, contracts, and Erlang Code
when formatting results. Use the new --no_indentation option to get the old
behavior of not inserting line breaks.
Own Id: OTP-15135

	Use bit syntax in warnings instead of Core Erlang syntax, for readability.
Own Id: OTP-15752

	The format of the raw analysis result tagged with fun_app_args is changed to
{fun_app_args, [ArgNs, Args, Type]}.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15779

 Dialyzer 3.3.2

 Fixed Bugs and Malfunctions

	Fix a bug that caused Dialyzer to crash when analyzing a contract with a
module name differing from the analyzed module's name. The bug was introduced
in Erlang/OTP 18.
Own Id: OTP-15562 Aux Id: ERL-845

	Fix a bug in the handling of the Key argument of
lists:{keysearch, keyfind, keymember}.
Own Id: OTP-15570

	Optimize (again) Dialyzer's handling of left-associative use of andalso and
orelse in guards.
Own Id: OTP-15577 Aux Id: ERL-851, PR-2141, PR-1944

 Dialyzer 3.3.1

 Improvements and New Features

	Optimize Dialyzer's handling of left-associative use of andalso and orelse
in guards.
Own Id: OTP-15268 Aux Id: ERL-680

 Dialyzer 3.3

 Improvements and New Features

	Changed the default behaviour of .erlang loading: .erlang is no longer
loaded from the current directory. c:erlangrc(PathList) can be used to
search and load an .erlang file from user specified directories.
escript, erlc, dialyzer and typer no longer load an .erlang at all.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14439

	Dialyzer can no longer read BEAM files created with OTP 19 or earlier.
Own Id: OTP-14493 Aux Id: PR-1434

	Speed up the computation of MD5 sums.
Own Id: OTP-14937 Aux Id: PR-1719

	Fix a situation where Dialyzer unnecessarily discarded contract information,
resulting in missed warnings.
Own Id: OTP-14970 Aux Id: PR-1722

	The (not recommended) option -Woverspecs is somewhat refined, and generates
warnings in a few more cases.
Own Id: OTP-14982 Aux Id: OTP-14970, PR-1722

	Do not emit warnings for fun expressions residing in code that cannot be run.
This is consistent with how Dialyzer treats other code that cannot be run.
Own Id: OTP-15079 Aux Id: ERL-593

 Dialyzer 3.2.4

 Fixed Bugs and Malfunctions

	Fix bugs concerning erlang:abs/1 and erlang:bsl/2.
Own Id: OTP-14858 Aux Id: ERL-551

	Fix a bug that caused Dialyzer to crash instead of emitting a warning.
Own Id: OTP-14911

	Fix a bug concerning parameterized opaque types.
Own Id: OTP-14925 Aux Id: ERL-565

 Dialyzer 3.2.3

 Fixed Bugs and Malfunctions

	The error message returned from Dialyzer when, for example, a modified record
field type is not a subtype of the declared type, no longer includes a call
stack. The bug was introduced in Erlang/OTP 19.3.
Own Id: OTP-14742

	A bug relating to maps and never returning functions has been fixed.
Own Id: OTP-14743

 Dialyzer 3.2.2

 Fixed Bugs and Malfunctions

	Fix a bug regarding map types that caused Dialyzer to go into an infinite
loop. A consequence of the fix is that compound map keys such as maps and
tuples sometimes are handled with less precision than before.
Own Id: OTP-14572 Aux Id: seq13319

 Improvements and New Features

	General Unicode improvements.
Own Id: OTP-14462

	The check for unknown remote types is improved.
Own Id: OTP-14606 Aux Id: OTP-14218

 Dialyzer 3.2.1

 Fixed Bugs and Malfunctions

	Fix a bug where merging PLT:s could lose info. The bug was introduced in
Erlang/OTP 20.0.
Own Id: OTP-14558 Aux Id: ERIERL-53

 Dialyzer 3.2

 Fixed Bugs and Malfunctions

	The check of bad type variables in type declarations was mistakingly removed
in Erlang/OTP 18, and is now re-introduced.
Own Id: OTP-14423 Aux Id: OTP-14323

 Improvements and New Features

	Analyzing modules with binary construction with huge strings is now much
faster. The compiler also compiles such modules slightly faster.
Own Id: OTP-14125 Aux Id: ERL-308

	The peak memory consumption is reduced.
Own Id: OTP-14127

	Warnings about unknown types are now also generated for types not used by any
function specification.
Own Id: OTP-14218 Aux Id: OTP-14127

	TypEr has been removed as separate application and is now a part of the
Dialyzer application. Documentation for TypEr has been added in the Dialyzer
application.
Own Id: OTP-14336

	The format of debug information that is stored in BEAM files (when
debug_info is used) has been changed. The purpose of the change is to better
support other BEAM-based languages such as Elixir or LFE.
All tools included in OTP (dialyzer, debugger, cover, and so on) will handle
both the new format and the previous format. Tools that retrieve the debug
information using beam_lib:chunk(Beam, [abstract_code]) will continue to
work with both the new and old format. Tools that call
beam_lib:chunk(Beam, ["Abst"]) will not work with the new format.
For more information, see the description of debug_info in the documentation
for beam_lib and the description of the {debug_info,{Backend,Data}} option
in the documentation for compile.
Own Id: OTP-14369 Aux Id: PR-1367

 Dialyzer 3.1.1

 Fixed Bugs and Malfunctions

	Report unknown types properly. A bug was introduced in Erlang/OTP 19.3, where
warnings about unknown types were simply discarded.
Own Id: OTP-14368

 Dialyzer 3.1

 Fixed Bugs and Malfunctions

	Fix a bug concerning parameterized opaque types.
Own Id: OTP-14130

	Improve a few warnings. One of them could cause a crash.
Own Id: OTP-14177

	The dialyzer and observer applications will now use a portable way to find the
home directory. That means that there is no longer any need to manually set
the HOME environment variable on Windows.
Own Id: OTP-14249 Aux Id: ERL-161

 Improvements and New Features

	The peak memory consumption is reduced.
The evaluation of huge SCCs in dialyzer_typesig is optimized.
Analyzing modules with binary construction with huge strings is now much
faster.
Own Id: OTP-14126 Aux Id: ERL-308

 Dialyzer 3.0.3

 Fixed Bugs and Malfunctions

	Fix bugs regarding opaque types.
Own Id: OTP-13693

	Fix error handling of bad -dialyzer() attributes.
Own Id: OTP-13979 Aux Id: ERL-283

 Improvements and New Features

	A few warning messages have been improved.
Own Id: OTP-11403

 Dialyzer 3.0.2

 Improvements and New Features

	The translation of forms to types is improved for opaque types in a few cases.
Own Id: OTP-13682

	Add warning suppression to compiler-generated case statements. Warnings about
clauses that cannot match and are also compiler generated are suppressed
unless none of the clauses return.
Own Id: OTP-13723 Aux Id: ERL-159, PR-1121

 Dialyzer 3.0.1

 Fixed Bugs and Malfunctions

	Fix a map related bug.
Own Id: OTP-13709 Aux Id: ERL-177, PR-1115

 Dialyzer 3.0

 Fixed Bugs and Malfunctions

	Fix a bug in the translation of forms to types.
Own Id: OTP-13520

	Correct misspelling in Dialyzer's acronym definition.
Own Id: OTP-13544 Aux Id: PR-1007

	Dialyzer no longer crashes when there is an invalid function call such as
42(7) in a module being analyzed. The compiler will now warn for invalid
function calls such as X = 42, x(7).
Own Id: OTP-13552 Aux Id: ERL-138

	Fix a bug that caused Dialyzer to go into an infinite loop.
Own Id: OTP-13653 Aux Id: ERL-157

	Fix a bug in Dialyzer related to call-site analysis.
Own Id: OTP-13655 Aux Id: PR-1092

 Improvements and New Features

	The evaluation of SCCs in dialyzer_typesig is optimized.
Maps are used instead of Dicts to further optimize the evaluation.
Own Id: OTP-10349

	Since Erlang/OTP R14A, when support for parameterized modules was added,
module/0 has included tuple/0, but that part is removed; the type
module/0 is now the same as atom/0, as documented in the Reference
Manual.
Own Id: OTP-13244

	The type specification syntax for Maps is improved:
	The association type KeyType := ValueType denotes an association that must
be present.
	The shorthand ... stands for the association type any() => any().

An incompatible change is that #{} stands for the empty map. The type
map/0 (a map of any size) can be written as #{...}.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13542 Aux Id: PR-1014

	The translation of forms to types is improved.
Own Id: OTP-13547

 Dialyzer 2.9

 Fixed Bugs and Malfunctions

	Dialyzer no longer asserts that files and directories to be removed from a PLT
exist.
Own Id: OTP-13103 Aux Id: ERL-40

	Fix a bug concerning parameterized opaque types.
Own Id: OTP-13237

	Fix pretty printing of Core Maps
Literal maps could cause Dialyzer to crash when pretty printing the results.
Own Id: OTP-13238

	If a behavior module contains an non-exported function with the same name as
one of the behavior's callbacks, the callback info was inadvertently deleted
from the PLT as the dialyzer_plt:delete_list/2 function was cleaning up the
callback table.
Own Id: OTP-13287

	Correct the contract for erlang:byte_size/1
Correct the handling of comparison operators for map and bit string operands.
Own Id: OTP-13312

 Improvements and New Features

	Dialyzer recognizes calls to M:F/A where M, F, and A are all literals.
Own Id: OTP-13217

 Dialyzer 2.8.2

 Fixed Bugs and Malfunctions

	Reintroduce the erlang:make_fun/3 BIF in erl_bif_types.
Own Id: OTP-13068

 Dialyzer 2.8.1

 Fixed Bugs and Malfunctions

	Improve the translation of forms to types.
Own Id: OTP-12865

	Fix a bug concerning parameterized opaque types.
Own Id: OTP-12866

	Fix a bug concerning parameterized opaque types.
Own Id: OTP-12940

	Fix bugs concerning erlang:abs/1.
Own Id: OTP-12948

	Fix a bug concerning lists:keydelete/3 with union and opaque types.
Own Id: OTP-12949

	Use new function hipe:erts_checksum to get correct runtime checksum for
cached beam files.
Own Id: OTP-12964 Aux Id: OTP-12963, OTP-12962

 Dialyzer 2.8

 Fixed Bugs and Malfunctions

	The translation of Erlang forms to the type representation used by Dialyzer
has been improved in several ways. The most important change is that deeply
nested records can be handled.
Own Id: OTP-12350

	Fix a bug that could cause bogus warnings for opaque types.
In Erlang/OTP 18 two parameterized types declared in the same module always
result in a contradiction (none/0) when combined outside of the module
where they are declared, unless they have the same number of parameters.
The behaviour is different from Erlang/OTP 17 where, for instance,
dict:dict() and dict:dict(_, _),
which are both opaque, can be combined outside of the dict module.
In Erlang/OTP 18, dict:dict() and
dict:dict(_, _) can still be combined outside of the
dict module. That has been made possible by not declaring
dict:dict() as opaque.
Own Id: OTP-12493

	Update the PLT properly when a module is changed. (Thanks to James Fish for
the bug report, and to Stavros Aronis for fixing the bug.)
Own Id: OTP-12637

	An argument of '*'/2 is not constraind if the other operand can be zero.
Own Id: OTP-12725

	Mention the option check_plt among the dialyzer:gui() options. (Thanks to
James Fish.)
Own Id: OTP-12750

	Fix a bug which could cause an infinite loop in Dialyzer.
Own Id: OTP-12826

 Improvements and New Features

	The -dialyzer() attribute can be used for suppressing warnings in a module
by specifying functions or warning options. It can also be used for requesting
warnings in a module.
Own Id: OTP-10280

	The pre-defined types array(), dict(), digraph(), gb_set(),
gb_tree(), queue(), set(), and tid() have been removed.
Own Id: OTP-11445 Aux Id: OTP-10342, OTP-9352

	A few type names that have been used for representing certain predefined types
can now be used for user-defined types. This affects the types product/_,
union/_, and range/2 as well as tuple/N (N > 0), map/N (N > 0),
atom/1, integer/1, binary/2, record/_, and 'fun'/_. A consequence is
that, for example, it is no longer possible to refer to a record type with
record(r); instead the usual record notation, #r{}, is to be used.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-11851

	When implementing user-defined behaviours it is now possible to specify
optional callback functions. See OTP Design Principles User's Guide, Sys and
Proc_Lib, User-Defined Behaviours, for details.
Own Id: OTP-11861

	Add two options to the Dialyzer: no_missing_calls suppresses warnings about
calls to missing or unexported functions; unknown lets warnings about
unknown functions or types affect the exit status. See also dialyzer(3).
Own Id: OTP-12682

	By default, dialyzer will now cache native versions of dialyzer modules to
avoid having to re-compile them each time dialyzer is started. Caching can be
disabled using the option --no_native_cache.
Own Id: OTP-12779

 Dialyzer 2.7.4

 Fixed Bugs and Malfunctions

	A bug concerning map/0 types has been fixed.
Own Id: OTP-12472

 Dialyzer 2.7.3

 Fixed Bugs and Malfunctions

	When compiling Erlang source, Dialyzer now ignores the environment variable
ERL_COMPILER_OPTIONS as well as skips the Erlang Compiler option
warnings_as_errors.
Own Id: OTP-12225

	Dialyzer did not check the type of record elements when updating them. The
bug, introduced in Erlang/OTP 17.1, has been corrected. (Thanks to Nicolas
Dudebout for pointing it out.)
Own Id: OTP-12319

	Coalesce map keys in dialyzer mode
This fixes a regression introduced in commit
805f9c89fc01220bc1bb0f27e1b68fd4eca688ba The problem occurred with compounded
map keys compiled with dialyzer option turned on, '+dialyzer'.
Reported by: Ivan Uemlianin
Own Id: OTP-12347

 Dialyzer 2.7.2

 Fixed Bugs and Malfunctions

	A bug concerning is_record/2,3 has been fixed, as well as some cases where
Dialyzer could crash due to reaching system limits.
Own Id: OTP-12018

	When given the -Wunderspecs flag Dialyzer sometimes output bogus warnings
for parametrized types. This bug has been fixed.
Own Id: OTP-12111

	Dialyzer now fetch the compile options from beam files, and use them when
creating core from the abstract code. Previously the options were ignored.
Own Id: OTP-12150

 Dialyzer 2.7.1

 Fixed Bugs and Malfunctions

	Fix a bug concerning opaque types. Thanks to Shayan Pooya for pointing out the
bug.
Own Id: OTP-11869

	A bug where Dialyzer failed to handle typed records with fields containing
remote types has been fixed. Thanks to Erik Søe Sørensen for reporting the
bug.
Own Id: OTP-11918

	Make sure that only literal records are checked against the types of record
definitions. Until now the elements of tuples have been checked against record
field types if the tag och size of the tuple matches the record definition,
often with surprising results.
Own Id: OTP-11935 Aux Id: seq12590

	A Dialyzer crash involving analysis of Map types has now been fixed.
Own Id: OTP-11947

 Dialyzer 2.7

 Fixed Bugs and Malfunctions

	Dialyzer will no longer emit warnings when inspecting or modifying opaque
types within the scope of a module.
Hitherto the shape of terms (tuple, list, etc.) has been used to determine the
opaque terms, but now the contracts are used for decorating types with
opacity.
Own Id: OTP-10397

	With --Wunmatched_returns, dialyzer will no longer warn when the value of a
list comprehension is ignored, provided that the each value in the list would
be an atomic value (such as integer or atoms, as opposed to tuples and lists).
Example: ignoring '[io:format(...) || ...]' will not cause a warning, while
ignoring '[file:close(Fd) || ...]' will.
Own Id: OTP-11626

	The man page for dialyzer now contains correct information regarding
-Wno_behaviours. (Thanks to Steve Vinosky.)
Own Id: OTP-11706

	Fix handling of 'on_load' attribute. (Thanks to Kostis Sagonas.)
Own Id: OTP-11743

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

	The generalization of guard constraints has been modified.
Own Id: OTP-11798 Aux Id: seq12547

	Dialyzer now plays nicely with funs that come as "external" arguments. (Thanks
to Stavros Aronis for fixing the bug.)
Own Id: OTP-11826

 Improvements and New Features

	The pre-defined types array/0, dict/0, digraph/0, gb_set/0,
gb_tree/0, queue/0, set/0, and tid/0 have been deprecated. They will
be removed in Erlang/OTP 18.0.
Instead the types array:array/0,
dict:dict/0, digraph:graph/0,
gb_set:set/0, gb_tree:tree/0, queue:queue/0,
sets:set/0, and ets:tid/0 can be used.
(Note: it has always been necessary to use ets:tid/0.)
It is allowed in Erlang/OTP 17.0 to locally re-define the types array/0,
dict/0, and so on.
New types array:array/1,
dict:dict/2, gb_sets:set/1,
gb_trees:tree/2,
queue:queue/1, and sets:set/1 have
been added.
A compiler option, nowarn_deprecated_type, has been introduced. By including
the attribute
-compile(nowarn_deprecated_type).
in an Erlang source file, warnings about deprecated types can be avoided in
Erlang/OTP 17.0.
The option can also be given as a compiler flag:
erlc +nowarn_deprecated_type file.erl
Own Id: OTP-10342

	Removed gs based applications and gs based backends. The observer
application replaces the removed applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10915

	Forbid unsized fields in patterns of binary generators and simplified
v3_core's translation of bit string generators. (Thanks to Anthony Ramine.)
Own Id: OTP-11186

	EEP43: New data type - Maps
With Maps you may for instance:
	____ - M0 = #{ a => 1, b => 2}, % create associations

	____ - M1 = M0#{ a := 10 }, % update values

	____ - M2 = M1#{ "hi" => "hello"}, % add new associations

	____ - #{ "hi" := V1, a := V2, b := V3} = M2. % match keys with values

For information on how to use Maps please see Map Expressions in the
Reference Manual.
The current implementation is without the following features:
	____ - No variable keys

	____ - No single value access

	____ - No map comprehensions

Note that Maps is experimental during OTP 17.0.
Own Id: OTP-11616

	Parameterized opaque types have been introduced.
Own Id: OTP-11625

	Some function specs are corrected or moved and some edoc comments are
corrected in order to allow use of edoc. (Thanks to Pierre Fenoll)
Own Id: OTP-11702

 Dialyzer 2.6.1

 Fixed Bugs and Malfunctions

	A bug that made it impossible to do any analyses from the GUI has been fixed.
Own Id: OTP-11057 Aux Id: seq12313

 Improvements and New Features

	Include module, function and arity in Dialyzer's "overlapping domain"
warnings. Thanks to Magnus Henoch.
Own Id: OTP-10918

	Improve Dialyzer output for scan errors. Thanks to Magnus Henoch.
Own Id: OTP-10996

	Integrate elliptic curve contribution from Andreas Schultz
In order to be able to support elliptic curve cipher suites in SSL/TLS,
additions to handle elliptic curve infrastructure has been added to public_key
and crypto.
This also has resulted in a rewrite of the crypto API to gain consistency and
remove unnecessary overhead. All OTP applications using crypto has been
updated to use the new API.
Impact: Elliptic curve cryptography (ECC) offers equivalent security with
smaller key sizes than other public key algorithms. Smaller key sizes result
in savings for power, memory, bandwidth, and computational cost that make ECC
especially attractive for constrained environments.
Own Id: OTP-11009

	Bitstring type inference and duplicate module error message fixes. Thanks to
Stavros Aronis.
Own Id: OTP-11027

	Erlang source files with non-ASCII characters are now encoded in UTF-8
(instead of latin1).
Own Id: OTP-11041 Aux Id: OTP-10907

 Dialyzer 2.6

 Improvements and New Features

	Miscellaneous updates due to Unicode support.
Own Id: OTP-10820

	User defined types with same name and different arity and documentation
inconsistencies. Thanks Stavros Aronis.
Own Id: OTP-10861

	Native code compilation changes. Thanks to Kostis Sagonas.
Own Id: OTP-10865

 Dialyzer 2.5.4

 Improvements and New Features

	Support for Unicode has been implemented.
Own Id: OTP-10302

	Dialyzer no longer outputs warnings for unused anonymous functions ("funs").
Warnings are still output for unused functions.
Own Id: OTP-10433

	Where necessary a comment stating encoding has been added to Erlang files. The
comment is meant to be removed in Erlang/OTP R17B when UTF-8 becomes the
default encoding.
Own Id: OTP-10630

	Some examples overflowing the width of PDF pages have been corrected.
Own Id: OTP-10665

	Fix precision of record creation violation warnings. Thanks to Stavros Aronis
Own Id: OTP-10681

	Report spec discrepancy on mismatching lists. Thanks to Stavros Aronis.
Own Id: OTP-10740

	Properly support functions with arbitrary arity in type specs. Thanks to
Stavros Aronis.
Own Id: OTP-10772

 Dialyzer 2.5.3

 Fixed Bugs and Malfunctions

	Fix a crash in race condition detection
Remove old untested experimental extension
Respect {plt_check,false} option when using dialyzer:run/1
Fix handling of tuple set remote types appearing in tuple sets
Own Id: OTP-10464

 Dialyzer 2.5.2

 Fixed Bugs and Malfunctions

	Correct handling of type names in contracts. Fix crash related to contract
checking. Do not rewrite unchanged PLT.
Own Id: OTP-10083

	Stop a forgotten server process
Dialyzer forgot to stop a server process before finishing its analysis. This
is a concurrency error detected by Concuerror. Changes to fix warnings
identified by running dialyzer -Wunmatched_returns. Thanks to Kostis Sagonas.
Own Id: OTP-10231

 Improvements and New Features

	Bug fixes and improvements of dialyzer_typesig.
Own Id: OTP-10082

	Add parallel dialyzer support
Own Id: OTP-10103

	An alternative implementation of the solver in dialyzer_typesig has been
introduced. It is faster than the original implementation.
Own Id: OTP-10110

	Bugs in erl_types:t_inf() (HiPE) and in dialyzer_dataflow (Dialyzer) have
been fixed.
Own Id: OTP-10191

 Dialyzer 2.5.1

 Improvements and New Features

	Handle nowarn_unused_function the same way as the compiler does.
Own Id: OTP-9833

 Dialyzer 2.5

 Fixed Bugs and Malfunctions

	Fix false warning about closure application
Whenever a variable that could hold one of two or more possible closures was
used in a particular application, the application was assumed to fail if ONE
of the closures would fail in this application. This has been corrected to
infer failing application if ALL possible closures would fail in the
particular application.
Change category of 'might also return' warnings
Dialyzer emits warnings like the following "The specification for _ states
that the function might also return but the inferred return is ", which are
actually underspecifications and not wrong type specifications. This patch
makes sure that they are filed under the appropriate category.
Own Id: OTP-9707

	Wrap up behaviours patch for Dialyzer
	Enable warnings by default, add two options for suppressing them
	Fix warning formatting and update testsuites.
	Detection of callback-spec discrepancies
	Allow none() as return value in callbacks
	Behaviour callback discrepancy detection for Dialyzer
	Add lookup function for callbacks
	Store callbacks in codeserver and PLT
	Collect callback definitions during compilation
	Update inets results

Own Id: OTP-9731

		No warnings for underspecs with remote types
	Fix crash in Typer
	Fix Dialyzer's warning for its own code
	Fix Dialyzer's warnings in HiPE
	Add file/line info in a particular Dialyzer crash
	Update inets test results

Own Id: OTP-9758

		Correct callback spec in application module
	Refine warning about callback specs with extra ranges
	Cleanup autoimport compiler directives
	Fix Dialyzer's warnings in typer
	Fix Dialyzer's warning for its own code
	Fix bug in Dialyzer's behaviours analysis
	Fix crash in Dialyzer
	Variable substitution was not generalizing any unknown variables.

Own Id: OTP-9776

 Improvements and New Features

	Optimize the joining of maps in dialyzer_dataflow.
Own Id: OTP-9761

 Dialyzer 2.4.4

 Fixed Bugs and Malfunctions

	Update results of race_SUITE/extract_translations Update results of
small_SUITE/flatten Add codec_can and list_to_bitstring tests Fix bug when
reporting unused functions Update Dialyzer r9c_suite results Fix dialyzer
warning on default clause for binary comprehension (Thanks to Ivan Dubrov)
Own Id: OTP-9483

	Fix server loop detection
Dialyzer does not normally emit warnings for functions that implement
non-terminating server loops. This detection failed when some of the elements
in an SCC terminated normally (being for example list comprehensions or other
generic anonymous functions that were included in the SCC). This patch fixes
that.
Own Id: OTP-9489

	Add a proplist() type
Recently I was adding specs to an API and found that there is no canonical
proplist() type defined. (Thanks to Ryan Zezeski)
Own Id: OTP-9499

	Suppress some warnings about generation of non-returning funs
No warnings are emitted for funs that are non-returning when the function that
generates them has a contract that specifies that it will return such a
non-returning fun.
Enhance Dialyzer's inference on comparisons
This patch makes Dialyzer aware of Erlang's total ordering of terms, enabling
discrepancy detection in cases where e.g. integer() < tuple() is treated as a
comparison that might also return false (when it is certain to always return
true).
Minor fix in dead code
Fix infinite loop in dataflow
Update r9c/{inets,mnesia} results in dialyzer's test suite
Add origin information to #fun_var closures
(Thanks to Tuncer Ayaz and Maria Christakis)
Own Id: OTP-9529

	Quote atoms if necessary in types
Atoms in some occurrences were not correctly quoted when formatted to strings,
for instance by the typer program (Thanks to Tomas Abrahamsson)
Update Dialyzer's reference results
Own Id: OTP-9560

	Fix typer's crash for nonexisting files Remove unused macro Fix bug in
dataflow Decrease tuple arity limit This fixes a memory related crash.
Own Id: OTP-9597

 Improvements and New Features

	Types for several BIFs have been extended/corrected. Also the types for types
for lists:keyfind/3, lists:keysearch/3, and lists:keyemember/3 have been
corrected. The incorrect/incomplete types could cause false dialyzer warnings.
Own Id: OTP-9496

 Dialyzer 2.4.3

 Fixed Bugs and Malfunctions

	Fix the name of an error function(Thanks to Maria christakis)
Own Id: OTP-9175

	Fix crash related with the contract blame assignment patch
Own Id: OTP-9219

	dialyzer/doc: synchronize manual.txt and dialyzer.xml (Thanks to Tuncer Ayaz)
Own Id: OTP-9226

	Simplify Dialyzer's test suite structure
*_SUITE.erl files are now automatically generated by the respective data
directories by the Makefile.
Own Id: OTP-9278

 Dialyzer 2.4.2

 Fixed Bugs and Malfunctions

	Add a --fullpath option to Dialyzer
This change adds a --fullpath option to Dialyzer, which makes the warning
messages contain the full path of the corresponding file.
Original patch submitted by Magnus Henoch (legoscia) on 15/9/2010 and cooked
to death in the 'pu' branch all this time.
The patch was essentially correct and most of it has been used as is, but
there have been some changes to make the code slightly prettier, avoid some
code duplication, and add documentation to dialyzer's doc files and to its
help message.
Own Id: OTP-9098

	Fix warnings about guards containing not
The wording of warnings about unsatisfiable guards that used 'not' was
incorrect (the 'not' was not mentioned and it appeared as "Guard test
is_atom(atom()) can never succeed") (thanks to Stavros Aronis).
Own Id: OTP-9099

	Version 2.4.2 (in Erlang/OTP R14B02) ------------------------------------ -
Added --fullpath option to display files with warnings with their full file
names (thanks to Magnus Henoch for the original patch). - Better handling of
'and'/'or'/'not' guards that generate warnings (thanks to Stavros Aronis). -
Better blame assignment for cases when a function's spec is erroneous (thanks
to Stavros Aronis). - More descriptive warnings when a tuple/record pattern
contains subterms that violate the declared types of record fields (thanks to
Matthias Lang for the test case and for Stavros Aronis for the actual fix).
Own Id: OTP-9126

	Add spec to dialyzer_cl_parse:get_lib_dir/1
Own Id: OTP-9129

 Improvements and New Features

	Test suites for Dialyzer
This is a transcription of most of the cvs.srv.it.uu.se:/hipe repository
dialyzer_tests into test suites that use the test server framework.
See README for information on how to use the included scripts for
modifications and updates.
When testing Dialyzer it's important that several OTP modules are included in
the plt. The suites takes care of that too.
Own Id: OTP-9116

 Dialyzer 2.4.0

 Fixed Bugs and Malfunctions

	- Fixed pretty rare infinite loop when refining the types of an SCC whose
functions all returned none() (thanks to Stavros Aronis).
- Fixed pretty rare crash when taking the infimum of two tuple_sets.
Own Id: OTP-8979

 Improvements and New Features

	- Added ability to supply multiple PLTs for the analysis (option --plts).
Currently these PLTs must be independent (i.e., no module appears in more than
one PLT) and there must not include files with module name clashes.
- Strengthened and streamlined hard-coded type information for some BIFs and
key library functions.
Own Id: OTP-8962

 Dialyzer 2.3.1

 Improvements and New Features

	Eliminated warnings for auto-imported BIF clashes.
Own Id: OTP-8840

 Dialyzer 2.3.0

 Improvements and New Features

	Various changes to dialyzer-related files for R14.
- Dialyzer properly supports the new attribute -export_type and checks that
remote types only refer to exported types. A warning is produced if some
files/applications refer to types defined in modules which are neither in the
PLT nor in the analyzed applications.
- Support for detecting data races involving whereis/1 and unregister/1.
- More precise identification of the reason(s) why a record construction
violates the types declared for its fields.
- Fixed bug in the handling of the 'or' guard.
- Better handling of the erlang:element/2 BIF.
- Complete handling of Erlang BIFs.
Own Id: OTP-8699

 Dialyzer 2.2.0

 Improvements and New Features

	Much better support for opaque types (thanks to Manouk Manoukian).
Added support for recursive types (experimental).
Added support for parameterized modules.
Dialyzer now warns when -specs state that a function returns some type when in
fact it does not.
Added --no_native (-nn) option so that the user can bypass the native code
compilation that dialyzer heuristically performs when dialyzing many files.
Fixed minor bug in the dialyzer script allowing the --wx option to bring up
the wx-based GUI regardless of its placement in the options list.
Options --apps and -Wrace_conditions, which were added in the previous
version, are now properly documented in the manual.
Own Id: OTP-8464

 Dialyzer 2.1.0

 Improvements and New Features

	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8201

	Dialyzer can statically detect some kinds of data races in Erlang programs.
Use the new option -Wrace_conditions to enable the race analysis. The
technique is described in a paper which is available at:
http://www.it.uu.se/research/group/hipe/dialyzer/publications/races.pdf
Added support for packages (thanks to Maria Christakis).
There has been a major change in the default mode of Dialyzer. Previously, the
default mode was the GUI, while now it is the command line. As a result of
this change, it is now possible to analyze a set of files/dirs with the
command:
	dialyzer file1 ... fileN

In other words, the -c (--command-line) option is no longer necessary, though
it will be retained for some time for backwards compatibility. To start
dialyzer's GUI use either of the following commands:
	dialyzer --gui %% for the old gs-based GUI
	dialyzer --wx %% for the new wx-based GUI (where available)

There is a new option --apps which allows the user to easily refer to
Erlang/OTP applications and include them in the analysis or in the building of
the PLT. For example, we recommend building the PLT with:
	dialyzer --build_plt --apps erts kernel stdlib mnesia ...

The new option can also take absolute file names as well as applications. Note
that the application versions that will be included in the PLT are those that
correspond to the Erlang/OTP system which is used.
Dialyzer has a new wxWidgets based GUI (thanks to Elli Frangaki) for platforms
where the wx application is available.
Own Id: OTP-8300

 Dialyzer 2.0.0

 Improvements and New Features

	There is a major addition to the capabilities of dialyzer, worthy of bumping
the version number. Starting with this version, dialyzer not only accepts but
also properly processes remote types (i.e., types of the form
ModuleName:TypeName()). Previous dialyzer versions only accepted this notation
in -type and -spec declarations, but effectively ignored its information by
mapping remote types to the type any(). In contrast, starting with this
version, remote types are used in the analysis and are also stored in the
PLTs. (This addition changes the format of PLTs and requires rebuilding any
PLTs created by an older dialyzer version.) Note that dialyzer will complain
and abort the analysis of a set of modules if it needs to process a remote
type without a definition (either because the module does not include a
definition of the type or the module is not included in the analysis). We may
relax this restriction in a future version.
Fixed minor issue with dialyzer:run/1 crashing (upon its return) when used for
adding type information to an existing PLT.
Fixed minor but quite annoying issues in dialyzer's GUI.
Own Id: OTP-8187

 Dialyzer 1.9.2

 Improvements and New Features

	Fixed problem with type inference going into an infinite loop when analyzing a
strongly connected component of functions that do not return but also contain
an erroneous call which makes them fail and be assigned the type none()
instead of the type unit().
More accurate type information for some BIFs and library files.
Introduced boolean() as the `official' name for the type was so far known as
bool(). The latter is still accepted as well as boolean().
Own Id: OTP-8037

 Dialyzer 1.9.1

 Improvements and New Features

	Has better handling of opaque types.
The handling of UTF segments of bitstreams has been significantly strengthened
and revised. In all probability, now it is correct.
Own Id: OTP-7958

 Dialyzer 1.9.0

 Improvements and New Features

	The analysis accepts opaque type declarations and detects violations of
opacity of terms of such types. Starting with R13, many Erlang/OTP standard
libraries (array, dict, digraph, ets, gb_sets, gb_trees, queue, and sets)
contain opaque type declarations of their main data types. Dialyzer will spit
out warnings in code that explicitly depends on the structure of these terms.
Added support for handling UTF segments in bitstreams and for detecting
obvious type errors in these segments. Warning: This code is not terribly
tested though since there are very few Erlang programs which use Unicode-based
binaries - not surprising since this is a new language feature of R13.
Strengthened the discrepancy identification when testing for equality and
matching between terms of different types. This detects more bugs in code.
Added warning for M:F(...) calls where M is not a module term and F is not an
atom. Previously, such calls where found to fail but the reason for the
failure was not reported.
Added a convenient shorthand for the --no_check_plt option (-n).
Added the --dump_callgraph option for dumping the callgraph of all files that
are analyzed into a specified file. The callgraph either be dumped in raw
format, in .dot format, or converted to a .ps (postscript) file. Note that in
large callgraphs the generated postscript file might not be interpretable by
Ghostview. (Thanks to Ilya Khlopotov for the initial version of this
functionality.)
Own Id: OTP-7864

 Dialyzer 1.8.3

 Improvements and New Features

	Added the --no_check_plt option that makes the startup time faster when
working with stable PLTs that do not change.
Changed the phrasing of some warnings so that they do not cause confusion to
some users and correspond better to reality.
Own Id: OTP-7632

 Dialyzer 1.8.2

 Improvements and New Features

	Minor updates.
Own Id: OTP-7522

 Dialyzer 1.8.1

 Improvements and New Features

	There is new --raw option for Dialyzer to output the result of the analysis
in Erlang term, to facilitate later filtering and/or formatting.
Own Id: OTP-7386

	The return type of the Erlang interface dialyzer:run/1 has changed to only
return a list of warnings. If something goes wrong dialyzer dies with an
exception.
The handling of the PLT is now more flexible. There is no longer any default
PLT included with OTP. Please consult the manual for the changes.
Own Id: OTP-7389

 Dialyzer 1.8.0

 Improvements and New Features

	Dialyzer's analysis is from now on exclusively based on success typings. In
particular, support for options --old_style and --dataflow has been
discontinued.
Better and more aggressive handling of type information in records.
Dialyzer has a new warning option -Wunmatched_returns which warns for
function calls that ignore the return value. This catches many common
programming errors (e.g. calling file:close/1 and not checking for the
absence of errors), interface discrepancies (e.g. a function returning
multiple values when in reality the function is void and only called for its
side-effects), calling the wrong function (e.g. io_lib:format/1 instead of
io:format/1), and even possible performance defects (e.g. unnecessarily
constructing a list using a list comprehension instead of using
lists:foreach/2). Whenever a function returns a single atomic value (e.g.
'ok' or pid()), the warning is suppressed. This allows for "void" functions
(returning a single atom like 'ok') or for calls to certain builtins like
spawn. Because not all calls which ignore the return value are
discrepancies, the option is off by default and has to be explicitly requested
by the user. But we recommend it nevertheless.
Some warning options (-Wno_comp, -Wno_guards, -Wno_unsafe_beam, etc.)
which could be used when analyzing bytecode produced by an old BEAM compiler
have been removed.
Own Id: OTP-7241

 Dialyzer 1.7.2

 Improvements and New Features

	The warnings returned by the Erlang interface now contains a tag describing
the type of warning.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7134

 Dialyzer 1.7.1

 Improvements and New Features

	Use of success typings is now default, is robust and detects significantly
more errors than in previous versions.
Dialyzer now accepts and takes into account type information in record
declarations and in contracts -- see related paper in Erlang'07 workshop.
Various OTP applications (e.g. stdlib and kernel) are partially annotated with
appropriate contracts specifying types information for their functions.
The type previously known as unit() has been renamed to no_return(). Its use
in a contract as the return type of a function now silences off the "function
has no local return" dialyzer warning without use of the corresponding option.
Own Id: OTP-6997

 Dialyzer 1.7.0

 Improvements and New Features

	Minor Makefile changes.
Own Id: OTP-6689

	Dialyzer can now use success typings to find discrepancies. As a consequence
significantly more discrepancies are detected. The downside is that the
analysis takes about 2 to 2.5 times longer than in previous versions, and may
also result in some warnings that might be harder to interpret even though
they are correct. This has been a major change, worth of increasing the
version number.
New command-line options:
--succ_typings Use the success typings analysis.
--dataflow (default) Use the previous analysis.
The new type unit() has been introduced to handle the return type of
non-terminating functions such as servers.
Dialyzer's code server uses a compressed representation and the analysis
requires significantly less memory than in previous versions.
Own Id: OTP-6736

 Dialyzer 1.6.0

 Improvements and New Features

	Dialyzer (in the modes where either source or BEAM code which contains
debug_info is analyzed) spits out line information for all discrepancies. This
has been a major change, worth of increasing the version number.
We warn users that considerably more discrepancies are identified by this
version of Dialyzer compared with previous ones and applications. If, for some
reason, warnings generated by previous versions of Dialyzer are preferable,
the command line option --old_style can be employed.
Own Id: OTP-6546

	Dialyzer handles term comparison operators more precisely and is able to
identify more discrepancies in 'if' or 'case' statements with comparisons.
Dialyzer has more precise type information for many standard OTP functions.
Own Id: OTP-6547

 Dialyzer 1.5.1

 Improvements and New Features

	Updated the chapter "More on the Persistent Lookup Table (PLT)" in Dialyzer
User's Guide and added information on how to use Dialyzer from Erlang to
dialyzer. Also, the Dialyzer text files used by its GUI are now included
in the Erlang/OTP release.
Own Id: OTP-6361

	New options --check_init_plt and --verbose.
Improvements in the analysis (meaning that this version can find more
discrepancies than the previous version).
Own Id: OTP-6421

 Dialyzer 1.5.0

 Improvements and New Features

	Dialyzer's building of PLT is based on a different type inference algorithm.
More specifically, Dialyzer uses inference of refined success typings to infer
function prototypes. As a result, Dialyzer bases its analysis on a
significantly more powerful basis and thus is able to detect more
discrepancies. The downside is that building the PLT is a considerably slower
process. We will work on improving that.
Dialyzer takes into account the BEAM compiler directive
-compile({nowarn_unused_function, {F,A}}). and then suppresses the warning
that function F/A will never be called.
Dialyzer's default initial PLT now also includes "mnesia".
Own Id: OTP-6304

 Dialyzer 1.4.2

 Improvements and New Features

	Improvements in PLT management.
Own Id: OTP-6128

 Dialyzer 1.4.1

 Fixed Bugs and Malfunctions

	Some minor changes.

 Improvements and New Features

	Some minor changes.

 Dialyzer 1.4.0

 Fixed Bugs and Malfunctions

	Changes for Dialyzer to work with Erlang/OTP R10B-10.

 Improvements and New Features

	Dialyzer's analysis is significantly faster as it uses a global function
call-graph for obtaining type signatures for all analyzed functions.

 Dialyzer 1.3.1

 Fixed Bugs and Malfunctions

	Small changes for Dialyzer to work with Erlang/OTP R10B-5.
	Fixed a small buglet in the analysis; this affected one of HiPE's files.

 Improvements and New Features

	Modified setup script for execution under Cygwin (patch by Vlad Dumitrescu).
	Added command line option --no_warn_on_inline.
	Dialyzer now explicitly warns when modules with the same name but from
different dirs are being analyzed (contribution by Ulf Wiger).

 Dialyzer 1.3.0

 Fixed Bugs and Malfunctions

	Fixed a number of false positives that Dialyzer 1.2.0 was spitting out.

 Improvements and New Features

	Requires the presence of an Erlang/OTP R10B-4 system.
	Dialyzer is significantly (approx 40%) faster since it now uses 'ets' rather
than 'dets' for its PLT.
	Slightly improved the precision of the analysis.
	In the GUI version, Dialyzer now reports the list of modules that should be
included in the modules to analyze in order to possibly improve the accuracy
of the reported results.
	Some more information is displayed when calling a function or closure with
arguments of the wrong type.
	The record guard now allows discrepancies involving tuples that are known to
be records to be displayed as #rec{} rather than {'rec',,...,}
	Added -q option which makes the command-line version of Dialyzer a bit more
silent.

 Dialyzer 1.2.0

 Improvements and New Features

	Dialyzer works with the open source and commercial versions of Erlang/OTP
R10B-2 on all platforms (i.e., HiPE support is not a prerequisite anymore).
	Whenever a .beam file contains abstract code (i.e., has been compiled with the
+debug_info option), the analysis starts from this code rather than from BEAM
bytecode -- this makes the results identical to those obtained by analysis
starting from source code. (This is a contribution from Bjorn Gustavsson -
Thanks!)
	Added -pa command line option for easier handling of -include_lib() directives
in source code.
	Includes all changes added in v1.1.1; see below. The "Add Recursively"
functionality is also available in the command-line mode (-r option).

 Dialyzer 1.1.1

 Fixed Bugs and Malfunctions

	Fixed problems using the shell script on Solaris machines.
	Fixed small inconsistencies in Dialyzer's documentation and help.

 Improvements and New Features

	The command-line mode of Dialyzer spits discrepancies in stdout by default and
returns a numeric value indicating its exit status.
	Added "Add Recursively" button contributed by Martin Bjorklund (thanks!).

 Dialyzer 1.1.0

 Improvements and New Features

	Dialyzer works with the open source version of Erlang/OTP R10B-1 (on platforms
where HiPE support is available) and it does not require installation of a
customized Erlang/OTP system anymore.
	Dialyzer comes with an extensive command-line interface, in addition to an
enhanced GUI.
	Analysis can start from source code (through Core Erlang) as well as from BEAM
bytecode.
	Dialyzer finds considerably more discrepancies in Erlang code than previous
versions.
	Added ability to selectively turn on/off different warning categories.

 Dialyzer 1.0.1

 Fixed Bugs and Malfunctions

	Fixed major bug of v1.0.0 which caused the analysis to stop prematurely (i.e.,
without properly reaching fixpoint) when analyzing more than one module. This
did not affect correctness of the results, but lost many opportunities to
detect discrepancies.

 Improvements and New Features

	Performance improvements in the analysis.

 Dialyzer 1.0.0

 Improvements and New Features

	Initial Dialyzer version: Analysis starts from BEAM bytecode only and only a
GUI version is available. Dialyzer reports discrepancies in the use of the
"sequential" part of Erlang. To be used, Dialyzer requires the presence of a
specific snapshot of Erlang/OTP which can be obtained from Dialyzer's
homepage.

Dialyzer

 Introduction

 Scope

Dialyzer is a static analysis tool that identifies software discrepancies, such
as definite type errors, code that is unreachable because of
programming error, and unnecessary tests in single Erlang modules or an entire
codebase.
Dialyzer can be called from the command line and from Erlang.

 The Persistent Lookup Table

Dialyzer stores the result of an analysis in a Persistent Lookup Table (PLT).
The PLT can then be used as a starting point for later analyses. It is
recommended to build a PLT with the Erlang/OTP applications that you are using,
but also to include your own applications that you are using frequently.
The PLT is built using option --build_plt to Dialyzer. The following command
builds the recommended minimal PLT for Erlang/OTP:
dialyzer --build_plt --apps erts kernel stdlib mnesia
Dialyzer looks if there is an environment variable called DIALYZER_PLT and
places the PLT at this location. If no such variable is set, Dialyzer places the
PLT in a file called .dialyzer_plt in the
filename:basedir(user_cache, "erlang") folder. The
placement can also be specified using the options --plt or --output_plt.
Information can be added to an existing PLT using option --add_to_plt. If you
also want to include the Erlang compiler in the PLT and place it in a new PLT,
then use the following command:
dialyzer --add_to_plt --apps compiler --output_plt my.plt
Then you can add your favorite application my_app to the new PLT:
dialyzer --add_to_plt --plt my.plt -r my_app/ebin
But you realize that it is unnecessary to have the Erlang compiler in this one:
dialyzer --remove_from_plt --plt my.plt --apps compiler
Later, when you have fixed a bug in your application my_app, you want to update
the PLT so that it becomes fresh the next time you run Dialyzer. In this case,
run the following command:
dialyzer --check_plt --plt my.plt
Dialyzer then reanalyzes the changed files and the files that depend on these
files. Note that this consistency check is performed automatically the next
time you run Dialyzer with this PLT. Use option --check_plt to perform the
consistency check without doing any other analysis.
To get information about a PLT, use the following option:
dialyzer --plt_info
To specify which PLT, use option --plt.
To get the output printed to a file, use option --output_file.
Note that no warnings are emitted when manipulating the PLT. To turn on
warnings during (re)analysis of the PLT, use option --get_warnings.

 Using Dialyzer from the Command Line

Dialyzer has a command-line version for automated use. See dialyzer.

 Using Dialyzer from Erlang

Dialyzer can also be used directly from Erlang. See dialyzer.

 Dialyzer's Model of Analysis

Dialyzer operates somewhere between a classical type checker and a more general
static-analysis tool: It checks and consumes function specs, yet does not require
them, and it can find bugs across modules which consider the dataflow of the
programs under analysis. This means Dialyzer can find genuine bugs in complex
code, and is pragmatic in the face of missing specs or limited information about
the codebase, only reporting issues which it can prove have the potential to
cause a genuine issue at runtime. This means Dialyzer will sometimes not report
every bug, since it cannot always find this proof.

 How Dialyzer Uses Function Specifications

Dialyzer infers types for all top-level functions in a module. If the module
also has a spec given in the source-code, Dialyzer will compare the inferred
type to the spec. The comparison checks, for each argument and the return, that
the inferred and specified types overlap — which is to say, the types have at
least one possible runtime value in common. Notice that Dialyzer does not check
that one type contains a subset of values of the other, or that they are
precisely equal: This allows Dialyzer to make simplifying assumptions to
preserve performance and avoid reporting program flows which could potentially
succeed at runtime.
If the inferred and specified types do not overlap, Dialyzer will warn that the
spec is invalid with respect to the implementation. However, if they do overlap,
Dialyzer will proceed under the assumption that the correct type for the given
function is the intersection of the inferred type and the specified type (the
rationale being that the user may know something that Dialyzer itself cannot
deduce). One implication of this is that if the user gives a spec for a function
which overlaps with Dialyzer's inferred type, but is more restrictive, Dialyzer
will trust those restrictions. This may then generate an error elsewhere that
follows from the erroneously restricted spec.
Examples:
Non-overlapping argument:
-spec foo(boolean()) -> string().
%% Dialyzer will infer: foo(integer()) -> string().
foo(N) ->
 integer_to_list(N).
Since the type of the argument in the spec is different from the type that
Dialyzer inferred, Dialyzer will generate the following warning:
some_module.erl:7:2: Invalid type specification for function some_module:foo/1.
 The success typing is some_module:foo
 (integer()) -> string()
 But the spec is some_module:foo
 (boolean()) -> string()
 They do not overlap in the 1st argument
Non-overlapping return:
-spec bar(a | b) -> atom().
%% Dialyzer will infer: bar(a | b) -> binary().
bar(a) -> <<"a">>;
bar(b) -> <<"b">>.
Since the return value in the spec and the return value inferred by Dialyzer are
different, Dialyzer will generate the following warning:
some_module.erl:11:2: Invalid type specification for function some_module:bar/1.
 The success typing is some_module:bar
 ('a' | 'b') -> <<_:8>>
 But the spec is some_module:bar
 ('a' | 'b') -> atom()
 The return types do not overlap
Overlapping spec and inferred type:
-spec baz(a | b) -> non_neg_integer().
%% Dialyzer will infer: baz(b | c | d) -> -1 | 0 | 1.
baz(b) -> -1;
baz(c) -> 0;
baz(d) -> 1.
Dialyzer will "trust" the spec and using the intersection of the spec and
inferred type:
baz(b) -> 0 | 1.
Notice how the c and d from the argument to baz/1 and the -1 in the
return from the inferred type were dropped once the spec and inferred type were
intersected. This could result in warnings being emitted for later functions.
For example, if baz/1 is called like this:
call_baz1(A) ->
 case baz(A) of
 -1 -> negative;
 0 -> zero;
 1 -> positive
 end.
Dialyzer will generate the following warning:
some_module.erl:25:9: The pattern
 -1 can never match the type
 0 | 1
If baz/1 is called like this:
call_baz2() ->
 baz(a).
Dialyzer will generate the following warnings:
some_module.erl:30:1: Function call_baz2/0 has no local return
some_module.erl:31:9: The call t:baz
 ('a') will never return since it differs in the 1st argument
 from the success typing arguments:
 ('b' | 'c' | 'd')

 Feedback and Bug Reports

We very much welcome user feedback! If you notice anything weird,
especially if Dialyzer reports any discrepancy that is a false
positive, please open an issue describing the symptoms and how to
reproduce them.

typer

Type annotator for Erlang programs.

 Description

TypEr shows type information for Erlang modules. Additionally, it can
annotate the code of files with such type information.

 Using TypEr

TypEr is used from the command-line. This section provides a brief description
of the options. The same information can be obtained by writing the following in
a shell:
typer --help
Usage:
typer [--help] [--version] [--plt PLT] [--edoc]
 [--show | --show-exported | --annotate | --annotate-inc-files | --annotate-in-place]
 [-Ddefine]* [-I include_dir]* [-pa dir]* [-pz dir]*
 [-T application]* file* [-r directory*]
Note
* denotes that multiple occurrences of the option are possible.

Options:
	-r - Search directories recursively for .erl files below them. If a list
of files is given, this option must given be after them.

	--show - Print type specifications for all functions on stdout. (This is
the default behaviour; this option is not really needed.)

	--show-exported (or show_exported) - Same as --show, but print
specifications for exported functions only. Specs are displayed sorted
alphabetically according to the function's name.

	--annotate - Annotate the specified files with type specifications.

	--annotate-inc-files - Same as --annotate, but annotates all
-include() files as well as all .erl files. (Use this option with caution —
it is not well-tested.)

	--annotate-in-place - Annotate directly in the source code files,
instead of dumping the annotated files in a different directory. (Use this
option with caution — it is not well-tested.)

	--edoc - Print type information as Edoc @spec comments, not as type
specs.

	--plt - Use the specified dialyzer PLT file rather than the default one.

	-T file* - The specified file(s) already contain type specifications and
these are to be trusted in order to print specs for the rest of the files.
(Multiple files or directories, separated by spaces, can be specified.)

	-Dname (or -Dname=value) - Pass the defined name(s) to TypEr. (**)

	-I - Pass the include_dir to TypEr. (**)

	-pa dir - Include dir in the path for Erlang. This is useful when
analyzing files that use -include_lib() directives or parse transforms.

	-pz dir - Include dir in the path for Erlang. This is useful when
analyzing files that use -include_lib() directives or parse transforms.

	--version (or -v) - Print the TypEr version and some more information
and exit.

Note
** options -D and -I work the same way as in
erlc.

dialyzer

Dialyzer is a DIscrepancy AnaLYZer for ERlang programs.
Dialyzer is a static analysis tool that identifies software
discrepancies, such as definite type errors, code that is unreachable
because of programming errors, and unnecessary tests in single Erlang
modules or an entire codebase.
Dialyzer starts its analysis from either debug-compiled BEAM code or
from Erlang source code. The file and line number of a discrepancy is
reported along with an indication of the nature of the discrepancy.
Dialyzer bases its analysis on the concept of success typings,
ensuring sound warnings without false positives.

 Using Dialyzer from the Command Line

This section provides a brief description of the options available
when running Dialyzer from the command line. The same information can
be obtained by writing the following in a shell:
dialyzer --help
Exit status of the command-line version:
	0 - No problems were found during the analysis and no warnings were
emitted.

	1 - Problems were found during the analysis.

	2 - No problems were found during the analysis, but warnings were
emitted.

Usage:
dialyzer [--add_to_plt] [--apps applications] [--build_plt]
 [--check_plt] [-Ddefine]* [-Dname]* [--dump_callgraph file]
 [--error_location flag] [files_or_dirs] [--fullpath]
 [--get_warnings] [--help] [-I include_dir]*
 [--incremental] [--metrics_file] [--no_check_plt] [--no_indentation]
 [--no_spec] [-o outfile] [--output_plt file] [-pa dir]* [--plt plt]
 [--plt_info] [--plts plt*] [--quiet] [-r dirs] [--raw]
 [--remove_from_plt] [--shell] [--src] [--statistics] [--verbose]
 [--version] [--warning_apps applications] [-Wwarn]*
Note
* denotes that multiple occurrences of the option are possible.

Options of the command-line version:
	--add_to_plt - The PLT is extended to also include the files specified
with -c and -r. Use --plt to specify which PLT to start from, and
--output_plt to specify where to put the PLT. Note that files already
included in the PLT will be reanalyzed if they depend on the new files.
This option only works for BEAM files, not source files.

	--apps applications - By default, warnings will be reported to all
applications given by --apps. However, if --warning_apps is used, only
those applications given to --warning_apps will have warnings reported. All
applications given by --apps, but not --warning_apps, will be analysed to
provide context to the analysis, but warnings will not be reported for them.
For example, you may want to include libraries you depend on in the analysis
with --apps so discrepancies in their usage can be found, but only include
your own code with --warning_apps so that discrepancies are only reported in
code that you own.

	--warning_apps applications - This option is typically used when
building or modifying a PLT as in:
dialyzer --build_plt --apps erts kernel stdlib mnesia ...
to refer conveniently to library applications corresponding to the
Erlang/OTP installation. This option can also be used during
analysis to refer to Erlang/OTP applications. File or directory
names can also be included, as in:
dialyzer --apps inets ssl ./ebin ../other_lib/ebin/my_module.beam

	--build_plt - The analysis starts from an empty PLT and creates a new
one from the files specified with -c and -r. This option only works for
BEAM files. To override the default PLT location, use --plt or
--output_plt.

	--check_plt - Check the PLT for consistency and rebuild it if it is not
up-to-date.

	-Dname (or -Dname=value) - When analyzing from source, pass the define
to Dialyzer. (**)

	--dump_callgraph file - Dump the call graph into the specified file
whose format is determined by the filename extension. Supported extensions
are: raw, dot, and ps. If something else is used as filename extension,
the default .raw format is used.

	--error_location column | line - Use a pair
{Line, Column} or an integer Line to pinpoint the location of warnings.
The default is to use a pair {Line, Column}. When formatted, the line and
the column are separated by a colon.

	files_or_dirs (for backward compatibility also as -c files_or_dirs) -
Use Dialyzer from the command line to detect defects in the specified files or
directories containing .erl or .beam files, depending on the type of the
analysis.

	--fullpath - Display the full path names of files for which warnings are
emitted.

	--get_warnings - Make Dialyzer emit warnings even when manipulating the
PLT. Warnings are only emitted for files that are analyzed.

	--help (or -h) - Print a help message and exit.

	-I include_dir - When analyzing from source, pass the include_dir to
Dialyzer. (**)

	--input_list_file file - Analyze the file names that are listed in the
specified file (one file name per line).

	--no_check_plt - Skip the PLT check when running Dialyzer. This is
useful when working with installed PLTs that never change.

	--incremental - The analysis starts from an existing incremental PLT, or
builds one from scratch if one does not exist, and runs the minimal amount of
additional analysis to report all issues in the given set of apps. Notably,
incremental PLT files are not compatible with "classic" PLT files, and vice
versa. The initial incremental PLT will be updated unless an alternative
output incremental PLT is given.

	--no_indentation - Do not insert line breaks in types, contracts, and
Erlang Code when formatting warnings.

	--no_spec - Ignore functions specs. This is useful for debugging when
one suspects that some specs are incorrect.

	-o outfile (or --output outfile) - When using Dialyzer from the
command line, send the analysis results to the specified outfile rather than
to stdout.

	--metrics_file file - Write metrics about Dialyzer's incrementality (for
example, total number of modules considered, how many modules were changed
since the PLT was last updated, how many modules needed to be analyzed) to a
file. This can be useful for tracking and debugging Dialyzer's incrementality.

	--output_plt file - Store the PLT at the specified file after building
it.

	-pa dir - Include dir in the path for Erlang. This is useful when
analyzing files that have -include_lib() directives.

	--plt plt - Use the specified PLT as the initial PLT. If the PLT was
built during setup, the files are checked for consistency.

	--plt_info - Make Dialyzer print information about the PLT and then
quit. The PLT can be specified with --plt(s).

	--plts plt* - Merge the specified PLTs to create the initial PLT. This
requires that the PLTs are disjoint (that is, do not have any module appearing
in more than one PLT). The PLTs are created in the usual way:
dialyzer --build_plt --output_plt plt_1 files_to_include
...
dialyzer --build_plt --output_plt plt_n files_to_include
They can then be used in either of the following ways:
dialyzer files_to_analyze --plts plt_1 ... plt_n
or
dialyzer --plts plt_1 ... plt_n -- files_to_analyze
Notice the -- delimiter in the second case.

	--quiet (or -q) - Make Dialyzer a bit more quiet.

	-r dirs - Same as files_or_dirs, but the specified directories are
searched recursively for subdirectories containing .erl or .beam files in
them, depending on the type of analysis.

	--raw - When using Dialyzer from the command line, output the raw
analysis results (Erlang terms) instead of the formatted result. The raw
format is easier to post-process (for example, to filter warnings or to output
HTML pages).

	--remove_from_plt - The information from the files specified with -c
and -r is removed from the PLT. Notice that this can cause a reanalysis of
the remaining dependent files.

	--src - Override the default, which is to analyze BEAM files, and
analyze starting from Erlang source code instead.

	--statistics - Print information about the progress of execution
(analysis phases, time spent in each, and size of the relative input).

	--verbose - Make Dialyzer a bit more verbose.

	--version (or -v) - Print the Dialyzer version and some more
information and exit.

	-Wwarn - A family of options that selectively turn on/off warnings. (For
help on the names of warnings, use dialyzer -Whelp.) Notice that the options
can also be specified in the file with a -dialyzer() attribute. For details,
see section
Requesting or Suppressing Warnings in Source Files.

Note
** the syntax of defines and includes is the same as that used by
erlc.

Warning options:
	-Werror_handling (***) - Include warnings for functions that only
return by an exception.

	-Wextra_return (***) - Warn about functions whose specification
includes types that the function cannot return.

	-Wmissing_return (***) - Warn about functions that return values that
are not part of the specification.

	-Wno_behaviours - Suppress warnings about behavior callbacks that drift
from the published recommended interfaces.

	-Wno_contracts - Suppress warnings about invalid contracts.

	-Wno_fail_call - Suppress warnings for failing calls.

	-Wno_fun_app - Suppress warnings for fun applications that will fail.

	-Wno_improper_lists - Suppress warnings for construction of improper
lists.

	-Wno_match - Suppress warnings for patterns that are unused or cannot
match.

	-Wno_missing_calls - Suppress warnings about calls to missing functions.

	-Wno_opaque - Suppress warnings for violations of opacity of data types.

	-Wno_return - Suppress warnings for functions that will never return a
value.

	-Wno_undefined_callbacks - Suppress warnings about behaviors that have
no -callback attributes for their callbacks.

	-Wno_unused - Suppress warnings for unused functions.

	-Wno_unknown - Suppress warnings about unknown functions and types. The
default is to warn about unknown functions and types when setting the exit
status. When using Dialyzer from Erlang, warnings about unknown functions and
types are returned.

	-Wunderspecs (***) - Warn about underspecified functions (the
specification is strictly more allowing than the success typing).

	-Wunmatched_returns (***) - Include warnings for function calls that
ignore a structured return value or do not match against one of many possible
return values. However, no warnings are included if the possible return values
are a union of atoms or a union of numbers.

The following options are also available, but their use is not recommended (they
are mostly for Dialyzer developers and internal debugging):
	-Woverspecs (***) - Warn about overspecified functions (the
specification is strictly less allowing than the success typing).

	-Wspecdiffs (***) - Warn when the specification is different than the
success typing.

Note
*** denotes options that turn on warnings rather than turning them off.

The following options are not strictly needed as they specify the
default. They are primarily intended to be used with the -dialyzer
attribute. For an example see section Requesting or Suppressing
Warnings in Source Files.
	-Wno_underspecs - Suppress warnings about underspecified functions (the
specification is strictly more allowing than the success typing).

	-Wno_extra_return - Suppress warnings about functions whose
specification includes types that the function cannot return.

	-Wno_missing_return - Suppress warnings about functions that return
values that are not part of the specification.

 Using Dialyzer from Erlang

Dialyzer can be used directly from Erlang. The options are similar to the ones
given from the command line. See section
Using Dialyzer from the Command Line.

 Default Dialyzer Options

The (host operating system) environment variable ERL_COMPILER_OPTIONS can be
used to give default Dialyzer options. Its value must be a valid Erlang term. If
the value is a list, it is used as is. If it is not a list, it is put into a
list.
The list is appended to any options given to run/1 or on the command line.
The list can be retrieved with compile:env_compiler_options/0.
Currently the only option used is the
error_location option.
Dialyzer configuration file:
Dialyzer's configuration file may also be used to augment the default options
and those given directly to the Dialyzer command. It is commonly used to avoid
repeating options which would otherwise need to be given explicitly to Dialyzer
on every invocation.
The location of the configuration file can be set via the DIALYZER_CONFIG
environment variable, and defaults to within the user_config from
filename:basedir/3.
An example configuration file's contents might be:
 {incremental,
 {default_apps,[stdlib,kernel,erts]},
 {default_warning_apps,[stdlib]}
 }.
 {warnings, [no_improper_lists]}.
 {add_pathsa,["/users/samwise/potatoes/ebin"]}.
 {add_pathsz,["/users/smeagol/fish/ebin"]}.

 Requesting or Suppressing Warnings in Source Files

Attribute -dialyzer() can be used for turning off warnings in a module by
specifying functions or warning options. For example, to turn off all warnings
for the function f/0, include the following line:
-dialyzer({nowarn_function, f/0}).
To turn off warnings for improper lists, add the following line to the source
file:
-dialyzer(no_improper_lists).
Attribute -dialyzer() is allowed after function declarations. Lists of warning
options or functions are allowed:
-dialyzer([{nowarn_function, [f/0]}, no_improper_lists]).
Warning options can be restricted to functions:
-dialyzer({no_improper_lists, g/0}).
-dialyzer({[no_return, no_match], [g/0, h/0]}).
The warning option for underspecified functions, -Wunderspecs, can result in
useful warnings, but often functions with specifications that are strictly more
allowing than the success typing cannot easily be modified to be less allowing.
To turn off the warning for underspecified function f/0, include the following
line:
-dialyzer({no_underspecs, f/0}).
For help on the warning options, use dialyzer -Whelp. The options are also
enumerated, see type warn_option/0.
Attribute -dialyzer() can also be used for turning on warnings. For example,
if a module has been fixed regarding unmatched returns, adding the following
line can help in assuring that no new unmatched return warnings are introduced:
-dialyzer(unmatched_returns).

 Summary

 Types

 OEBPS/assets/logo.png

OEBPS/dist/epub-CB7BJMUW.js
(()=>{var g=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var l="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d